Новые результаты численного моделирования коллапса невязких жидкостей, проведенного группой П. Орланди из университета Рима I, находят свое объяснение в рамках теории, развиваемой Е.А.Кузнецовым – главным научным сотрудником Сектора математической физики ФИАН, чл. корр. РАН. Коллапс в этой теории представляет собой процесс опрокидывания вихревых линий, в результате которого такой параметр как «завихренность» и компонента скорости, параллельная завихренности, становятся сингулярными. Это и есть тот момент, когда в турбулентой среде возникают ударные волны.
Явление коллапсов играет принципиально важную роль в формировании спектров развитой гидродинамической турбулентности. Коллапс, как процесс образования особенностей за конечное время, порождает в спектрах турбулентности асимптотики степенного типа. Именно поэтому изучение коллапсов играет столь важную роль в исследованиях проблемы колмогоровских спектров. Как известно, в газодинамике причина возникновения ударных волн связана с явлением опрокидывания. В самом простом варианте – одномерной газодинамики – опрокидывание может быть описано с помощью решения в виде простой волны Римана. Такое решение, записанное в неявном виде, показывает, что каждая «жидкая частица» двигается со своей скоростью, так что более быстрые частицы догоняют более медленные. В результате профиль скорости становится все более крутым, растут градиенты. Наконец, существует такой момент времени t*, когда градиенты становятся бесконечными – это и есть опрокидывание или, как говорят математики, градиентная катастрофа. Физическая первопричина опрокидывания связана со сжимаемостью газа. Математически оно может быть описано посредством перехода от эйлеровых переменных к лагранжевым, т.е. на языке отображения. При этом опрокидыванию соответствует обращение якобиана отображения J в нуль.
Как следует из уравнения Гельмгольца для завихренности, всякое движение жидкости вдоль вихревой линии не изменяет завихренность. Только нормальная к завихренности компонента скорости, представляющая собой скорость вихревой линии, может изменить завихренность. Этот факт имеет простую геометрическую интерпретацию: для произвольной линии всякие деформации, параллельные ей, не изменяют саму линию; она может меняться только за счет поперечных деформаций, которые в ситуации общего положения являются сжимаемыми. Именно это наблюдение показывает, что линии завихренности можно сжимать. Наличие в несжимаемой жидкости сжимаемой субстанции – является главным для понимания, почему в несжимаемой гидродинамике возможно опрокидывание вихревых линий. При приближении к точке опрокидывания происходит формирование сжимающегося вихревого слоя, толщина которого уменьшается быстрее его ширины. В результате в момент опрокидывания возникает особенность: в главном направлении – направлении опрокидывания, особенность завихренности имеет степенное колмогоровское поведение. Основные результаты численного моделирования коллапса невязких жидкостей, представленного в 2012 г. группой П. Орланди из университета Рима I, находят свое объяснение в рамках развиваемой теории. Это есть одно из свидетельств в пользу того, что коллапс в гидродинамике представляет собой опрокидывание вихревых линий.
Для двумерной турбулентности, как показано в работе Е.А. Кузнецова с соавторами А.Н. Кудрявцевым и Е.В. Серещенко (Письма ЖЭТФ 96, 783-789 (2012)), есть много общего с трехмерной турбулентностью. Здесь также существует опрокидывание – это опрокидывание ротора завихренности. Однако, в отличие от трехмерной турбулентности, такой процесс образования «особенности» за конечное время запрещен, а имеется только тенденция к образованию так называемых квази-сингулярностей в виде резких градиентов завихренности. Как показано в численных экспериментах, такого рода «особенности» вносят основной вклад в формирование спектров колмогоровского типа – спектров Крейчнана. Спектр турбулентности оказывается сильно анизотропным, представляет собой набор хорошо локализованных по углу джетов со слабыми и/или сильными перекрытиями.
Таким образом, как для двумерных, так и трехмерных турбулентных течений опрокидывание (несмотря на то, что этот процесс еще не до конца изучен) играет ключевую роль в формировании колмогоровских спектров развитой гидродинамической турбулентности.
В. Жебит, АНИ «ФИАН-Информ»
27.03.2013
Учеными Астрокосмического центра Физического института им. Лебедева (АКЦ ФИАН) предложен новый способ исследований крупномасштабной структуры Вселенной путем определения пекулярных скоростей по собственным движениям галактик относительно неподвижных фоновых объектов. Знание пекулярных скоростей позволит получить точные данные о распределении массы во Вселенной, о расстояниях до других галактик и о космологической постоянной Хаббла.
Известно, что все галактики подчиняются закону общего Хаббловского разбегания в контексте теории "Расширяющейся Вселенной". Однако если бы Вселенная подчинялась исключительно этому закону, то не существовало бы галактик. Факт неоднородного распределения массы во Вселенной говорит нам о геометрическом нарушении закона Хаббла. В связи с этим можно сказать, что на скорость движения галактик влияет не только закон Хаббла, но и отклонения от него, связанные с крупномасштабной структурой Вселенной. В космологии часть скорости, зависящая от структуры, называется пекулярной.
Измерение скорости для расчета космологических расстояний осуществляется сегодня с помощью эффекта Доплера, определения лучевой скорости по смещению линий спектра. В случае, когда объект удаляется - наблюдается красное смещение линий спектра. Однако данный метод позволяет узнать только общую радиальную скорость. Точное же разделение этой полной скорости на Хаббловскую и пекулярную части является важнейшей нерешенной до сих пор задачей космологии. Ее решение как раз и было предложено сотрудниками АКЦ ФИАН В.Н. Лукашем и С.В. Пилипенко.
"До сих пор точных методов разделения космологии и структуры не было. Космология – это Хаббловский поток, структура – это нарушение Хаббловского потока. В принципе, это точная математическая задача, требующая своего решения. Но раньше не было технологий, которые бы позволяли получить необходимые параметры. Сейчас, с развитием миллиметровых и субмиллиметровых радиоинтерферометров, мы имеем возможность перейти от теории к практике," – разъяснил Владимир Николаевич Лукаш, сотрудник АКЦ ФИАН, доктор физико-математических наук, профессор.
Для того, чтобы вычислить собственные пекулярные скорости галактик предложено измерять движения галактик на небесной сфере относительно дальних неподвижных объектов. При этом хаббловская компонента скорости, в силу своей радиальности, никакого вклада в эти сдвиги не вносит. Осуществление таких наблюдений стало возможным, благодаря появлению космических интерферометров, принцип действия которых основан на явлении интерференции. Интерферометр способен зафиксировать невидимые одиночным телескопам смещения космических объектов. Частью такого интерферометра является международный проект Радиоастрон, координатором которого выступает АКЦ ФИАН. Следующий планируемый проект – Миллиметрон, в задачи которого и войдет предложенный учеными метод вычисления пекулярных скоростей. В проекте создание космической обсерватории миллиметрового и субмиллиметрового диапазонов волн. С помощью сети наземных и одного космического радиотелескопов одновременно будет осуществляться наблюдение выбранного объекта. Такие наблюдения необходимо будет повторить через несколько лет, чтобы найти смещение объекта. Полученные данные позволят вычислить пекулярную компоненту и, в результате, восстановить трехмерную модель скорости наблюдаемого объекта.
"Изучая численные модели Вселенной, мы выяснили, что пекулярные скорости движения галактик не случайны и подчиняются такой закономерности, что могут быть описаны потенциальным полем скоростей. Это означает, что если мы измерим для большого количества галактик их скорости, ну скажем, в одном или двух направлениях, то после этого сможем восстановить трехмерные скорости ... И вот мы предложили это сделать не в численных моделях, а уже по настоящему, на практике. " – пояснил Сергей Владимирович Пилипенко, сотрудник АКЦ ФИАН, ассистент кафедры общей физики.
Пекулярные скорости несут важную информацию о начальных космологических возмущениях плотности и о распределении массы во Вселенной. Разделение Хаббловской и пекулярной скоростей откроет невероятные перспективы понимания крупномасшатбной структуры Вселенной. Обладая точными данными о расстояниях и траекториях различных объектов во Вселенной, можно будет лучше понять прошлое и будущее нашей и соседних галактик. Данные же о распределении массы во Вселенной помогут человечеству еще на шаг приблизиться к разгадке тайны происхождения Мироздания.
справа – восстановленная по собственным движениям.
Е. Барчугова, АНИ "ФИАН-Информ"
14.02.2013
Группа ученых из Самарского филиала Физического института им. П.Н. Лебедева РАН (СФ ФИАН) получила революционные данные в области моделирования ударных волн в неравновесной газовой среде, что позволит внести существенный вклад в развитие новой науки – плазменной аэродинамики.
Согласно современной трактовке, плазменная аэродинамика – раздел аэродинамики, в котором изучается взаимодействие плазмы с дозвуковым или сверхзвуковым потоком газа. Один из основных объектов исследований в плазменной аэродинамике – ударная волна в неравновесной газоплазменной, химически активной среде.
Ударная волна – это поверхность разрыва (тонкая переходная область), которая движется относительно исследуемой среды (газа, жидкости, плазмы) со сверхзвуковой скоростью, и при прохождении ее фронта происходит скачок значений температуры, давления, плотности вещества среды, а также скорости распространения самой волны.
Если среда к тому же представляет собой намагниченную плазму, при прохождении фронта ударной волны наблюдается еще и изменение характеристик магнитного поля. Все эти процессы происходят не случайным образом, а по определенным законам, которые вполне известны для обычных (равновесных) сред, но которые еще предстоит установить для сред неравновесных.
В настоящее время ученым необходимо детально разобраться в механизмах распространения и изменения ударной волны в неравновесных средах. Важнейшей прикладной задачей таких исследований является создание так называемой «плазменной оболочки» самолёта – включения в систему управления самолетом технологии искусственно создаваемого потока плазмы на крыле, которым можно управлять под воздействием магнитного поля, что позволит повысить эффективность аэродинамических характеристик летательных аппаратов.
Проводить подобные исследования лишь экспериментально – все равно, что пытаться наугад с завязанными глазами собрать космический корабль: слишком дорого и неэффективно. Поэтому на помощь экспериментаторам приходят физики-теоретики, чьи расчеты и математические модели задают общий тон и направление дальнейших исследований. Одной из таких групп физиков-теоретиков, работающих в тесной «связке» с прикладными исследованиями, является группа под руководством зав. теоретическим сектором СФ ФИАН, доктора физико-математических наук, профессора Молевич Нонны Евгеньевны.
На фото: Молевич Н.Е. на Третьей Европейской Конференции по Аэрокосмическим наукам
(3 EUCASS, Версаль, Франция, 2009г.) |
«Эксперименты по обтеканию моделей сверхзвуковыми газоплазменными потоками довольно дороги, без теоретических оценок получается «метод тыка» и топтание на месте. Поэтому рассматривают более простые ситуации с ударными трубами. Предложенная нами простая модель акустически активного неравновесного газа пока единственная, которая качественно объясняет возможные причины ускорения ударной волны, уширения переходной области за фронтом, расщепления волны и образование ударноволновых импульсов. Замечу также, что эта модель удовлетворительно объяснила и экспериментально обнаруженное ранее при других режимах газоплазменных экспериментов усиление ударных и акустических волн.
Мы впервые показали на простых моделях, что в неравновесной среде структура ударной волны действительно может сильно отличаться от равновесной. Получены стационарные волны четырёх типов: (1) ударные волны с возрастанием плотности и давления за разрывом, (2) волны с убыванием этих величин, (3) в форме автоволнового импульса, а также (4) в форме автоволны детонационного типа с ненулевой асимптотой. Показано, что эволюция волн малой амплитуды может быть для всех этих разных моделей неравновесной тепловыделяющей среды описана единым нелинейным уравнением», – рассказала Нонна Евгеньевна.
На фото: Результаты численного моделирования развития ударных волн из акустическогошума в неравновесной среде (2011г.)
|
Следует отметить, что ранее в среде ученых бытовало мнение, что динамику ударной волны можно описать, разделив её спектр на высоко- и низкочастотную области. Модель, предложенная группой Н.Е. Молевич, описывает весь частотный спектр возмущения без исключения, что позволяет адекватно, с экспериментальной точки зрения, описать поведение волны в разные моменты времени.
«Главное в наших работах на сегодняшний момент то, что впервые получен ответ на следующий вопрос: к чему приводит акустическая неустойчивость стационарно неравновесной среды с точки зрения конечной структуры газодинамического возмущения? Какие предельные амплитуды устанавливаются? Какая структура формируется за разрывным фронтом?» – объяснила Нонна Евгеньевна.
Вопрос, чем завершается акустическая неустойчивость, до последнего времени был неразрешенным, т.к. нелинейную структуру акустического возмущения пытались объяснить на основе низкочастотных или высокочастотных моделей. Группа ученых из СФ ФИАН показала, что это не правильный подход. Стационарная структура формируется в результате нелинейной передачи энергии от неустойчивых низких частот к устойчивым высоким, и она сама имеет широкий спектр. Поэтому её удалось правильно описать, только когда ученые из СФ ФИАН смогли получить обобщенное акустическое уравнение, как раз и способное описать эволюцию возмущения любого спектра.
Кроме того, впервые показано, что в зависимости от степени неравновесности среды существует критическая скорость ударных волн. Ударные волны могут распространяться только со скоростями большими этой критической скорости. Исследования ударных волн с начальной скоростью меньшей, чем критическая, методами численного моделирования показали, что такие волны ускоряются и распадаются на последовательность автоимпульсов или автоволн с ненулевой асимптотой детонационного типа, что и наблюдалось в ряде экспериментов. Параметры этих самоподдерживающихся структур полностью определяются свойствами неравновесной среды.
Также впервые был определен один из возможных механизмов воздействия дисперсионно-вязкостных свойств неравновесной газовой среды на структуру ударной волны: акустические свойства неравновесной среды приводят к качественным и количественным изменениям структуры ударных волн, ряд из которых, например ускорение ударной волны, расщепление фронта, образование впереди бегущих импульсов, ранее были зафиксированы экспериментально.
На фото: а) результаты численного моделирования расщепления фронта плоской ударной волны в неравновесной среде (2009г.);
б) экспериментально полученные снимки ударной волны в работах А.И. Климова, ОИВТ РАН (2002 г.)
|
Показано, что подобные структуры могут образовываться при разных типах неравновесности и моделях релаксации, причём не только в технических приложениях, но и природных средах. В последних они могут даже более ярко проявляться ввиду их протяженности и, соответственно, достаточности длины для установления стационарных режимов. Пример – модель межзвездного газа. Предложенная группой Н.Е. Молевич модель преобразования ударной волны позволила подтвердить гипотезу К.В. Краснобаева (ИКИ РАН) о наблюдаемой волокнистой структуре межзвездного газа. Согласно этой гипотезе, в ряде случаев наблюдаемая волокнистая структура – структура ударных волн в межзвездном газе – может быть связана с акустической неустойчивостью тепловыделяющей среды. В результате численного моделирования ученым из СФ ФИАН удалось показать возможность самопроизвольного распада ударной волны на систему автоволн на основе современной модели межзвездной среды.
На фото: Волокнистая структура ударных волн в межзвездном газе
|
«Для развития идеи «плазменной оболочки», да и плазменной аэродинамики в целом, необходимо детально разобраться в механизмах, приводящих к трансформациям структуры ударной волны в неравновесной газоплазменной и химически активных средах, классифицировать эти модификации. Именно поэтому научными центрами проводились и проводятся циклы экспериментов, исследующих поведение ударных волн в простых модельных условиях при зажигании разрядов разного типа. В этих простых модельных экспериментах наблюдались такие эффекты, как усиление и ускорение ударных волн, изменение структуры фронта и его расщепление, генерация предвестника в виде импульса перед фронтом ударной волны.
Пока полного теоретического обоснования этим явлениям нет. А, следовательно, и экспериментаторы работают «вслепую». Мы надеемся, что наши работы позволят изменить ситуацию,» – заключила Нонна Евгеньевна.
Е. Любченко, АНИ "ФИАН-Информ"
17.01.2013
Категории
Тэги
Астрофизика
- 1
- 2
- 3
Квазары предпочитают моду семидесятых
Ученые из России, Германии, Финляндии и США изучили больше 300 квазаров — вращаю...
Подробнее...Где рождаются нейтрино
Ученые из ФИАН, МФТИ и ИЯИ РАН установили, что нейтрино высоких энергий рождаютс...
Подробнее...Астрономы убедились, что квазары не «прибиты гвозд…
До недавних пор квазары считались самыми неподвижными объектами зв...
Подробнее...«Хвосты» квазаров могут …
Астрофизики из ФИАН, МФТИ и NASA нашли ошибку в определении координат центр…
Мощная вспышечная активн…
Серия мощных солнечных вспышек, произошедших с 6 по 8 сентября 2017 г…
Физика твердого тела
- 1
- 2
- 3
Ученые ФИАН измерили энтропию нанообъектов
Сотрудниками ФИАН придуман и реализован способ измерения энтропии нанообъектов. ...
Подробнее...Открыт ключевой механизм поддержания вакуумного ду…
Было обнаружено, что в процессе вакуумного дугового разряда, в структуре катодно...
Подробнее...Метаматериалы будущего
Исследования в области плазмоники и метаматериалов развиваются в направлении соз...
Подробнее...Гигантский фотогальванич…
В ходе исследования фотоэми…
Как электроны взаимодейс…
Изучение квантовых осцилляций магнитосопротивления дает …
Оптика
- 1
- 2
- 3
Атомные часы как сверхчувствительный квантовый сен…
В разделе News&Views журнала Nature опубликована статья с комментариями российск...
Подробнее...Оптическая спектроскопия на службе плазменных реак…
Сотрудниками ФИАН в сотрудничестве с ТРИНИТИ, МИФИ и МГУ развивается цикл исслед...
Подробнее...Размер имеет значение: что могут наночастицы
В ФИАНе сконструирована и запущена установка для получения наноразмерных материа...
Подробнее...Гибридный OLED открывает…
Поиск новых материалов для OLED-технологий – одно из самых молодых и перспе…
В исследованиях плазмы к…
В Лаборатории нелинейной оптики и рассеяния света ФИАНа проведены исследова…
Лазерная физика
- 1
- 2
- 3
Физики создали горизонтальный водопад
Artisan Home Entertainment Помните сцену из «Терминатора-2», где металлическа...
Подробнее...«Умное тепло»: селективная ИК-лазерная инактивация…
Сотрудники ФИАН в рамках сотрудничества с Институтом спектроскопии, Федеральным ...
Подробнее...Протон меньше, чем мы думали
Совместная группа ученых ФИАНа и немецкого Института квантовой оптики общества М...
Подробнее...С ультрафиолетовой точно…
Использование когерентного излучения ультрафиолетового диапазона для охлажд…
Лазерной терапии нужен с…
В материале «Облученные лазером» ФИАН-информ рассказывал об исследованиях п…
Масштабные эксперименты
- 1
- 2
- 3
Радиоастрон увидел нутро кандидата в двойные сверх…
Международная группа ученых получила новые указания на существование двойной све...
Подробнее...Лазерные нанотехнологии для борьбы с патогенными б…
В рамках проекта Российского научного фонда (РНФ) сотрудники лаборатории лазерно...
Подробнее...Ученые утверждают, что все космические нейтрино вы…
Ученые из Физического института имени П. Н. Лебедева РАН (ФИАН), Московского физ...
Подробнее...Как прорваться за предел…
Ученые ФИАН играют важную роль в эксперименте Belle II, который провод…
Наблюдательная программа…
Специалистам НПО им. С.А. Лавочкина не удалось наладить …
Приборостроение
- 1
- 2
- 3
Наночастицы повысят контрастность МРТ
Магнитно-резонансная томография - важнейший инструмент современной медицины. Она...
Подробнее...Термоядерный реактор под защитой
Физики из Отдела оптики низкотемпературной плазмы ФИАН создали и протестировали ...
Подробнее...Рукотворная реальность кристально чистой воды
Предприятием-резидентом Троицкого технопарка ФИАН – ООО ИТЦ «Комплексные исследо...
Подробнее...Новые типы ЖК откроют до…
В лаборатории оптоэлектронных процессоров ФИАН ведется работа по созданию н…
Совмещение рентгеновског…
Основной тренд развития современного аналитического приборостроения – созда…
Квантовая физика
- 1
- 2
- 3
Квантовая информатика сегодня и завтра
Президент Австрийской академии наук, профессор Венского университета Антон Цайли...
Подробнее...Квантовый вампир: неразрушающее действие оператора…
В эксперименте, проводимом специалистами ФИАН и Российского квантового центра, а...
Подробнее...Новое квантовомеханическое соотношение неопределен…
Международная группа ученых в ходе исследований энтропийно-эн...
Подробнее...Электронная жидкость в б…
В лаборатории физики низкоразмерных систем и структур ФИ…
Короткая память мерцающи…
Исследователи из Физического института имени П.Н. Лебедева вместе со св…
События и мероприятия
- 1
- 2
- 3
ФИАН на выставке «Фотоника. Мир лазеров и оптики»
Физический институт им. П.Н. Лебедева принял участие в открывшейся сегодня в Мос...
Подробнее...131 год со дня рождения С.И. Вавилова
24 марта 1891 г. родился Сергей Иванович Вавилов – физик, основатель научной шко...
Подробнее...Визит С.Бланда в ФИАН
В ФИАН на научном семинаре выступил доктор С. Бланд, с информацией о последних д...
Подробнее...Визит делегации Республи…
В Физическом институте им. П.Н. Лебедева РАН (ФИАН) делегация Рес…
10 конференция RICH прох…
С 29 июля по 4 августа 2018 года в Москве проходит Международная конференци…
Физика элементарных частиц
- 1
- 2
- 3
И все-таки они осциллируют!
Наблюдения осцилляций нейтрино в канале νμ → ντ в пучке CNGS (CERN Neutrinos to ...
Подробнее...Как описать кварки в классической теории
Сегодня существует уже множество свидетельств существования к...
Подробнее...В двумерной системе обна…
Физики из Института квантовой оптики им. М. Планка, Унив…
В поисках суперсимметрии
Гипотеза суперсимметрии уже давно требует экспериментального подтверждения.…